
ORNL is managed by UT-Battelle LLC for the US Department of Energy

GPU Programming Models

Subil Abraham

HPC Engineer – User Assistance

Frontier Workshop

February 16, 2023

22 Open slide master to edit

Models We Will Cover

Focusing on brief overview of each and how to compile on
Crusher:

• Kokkos

• OpenMP Offload

• HIP

Follow along with examples:
https://github.com/olcf/frontier_gpu_programming_models_examples

If you don’t have Crusher access, you can operate with these on Summit as
well (modifying to compile for Nvidia GPUs)

https://github.com/olcf/frontier_gpu_programming_models_examples

33 Open slide master to edit

HIP

44 Open slide master to edit

What is HIP?

• AMD’s API for GPU programming.

• Gives low level control (relative to other models I will talk about)
to write code for computing on GPUs

• Almost 1 to 1 replacement of CUDA (cudaAbcCall ->
hipAbcCall)
– Includes replacements for some CUDA libraries like cufft (hipfft) and

cublas (hipblas)
– Some CUDA calls not supported, because they are deprecated or not

yet implemented for HIP

• Existing tools (hipify-perl, hipify-clang) for converting your CUDA
code to HIP

55 Open slide master to edit

Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

__global__ void fill_array(int *a) {
int i = blockDim.x * blockIdx.x +

threadIdx.x;
a[i] = i + 2;

}
...
int *a;
hipMalloc(&a, N*sizeof(int));
hipLaunchKernelGGL((fill_array),
dim3(N/256), dim3(256), 0, 0, a);

This is if you were writing your own HIP kernel. There are also a lot of prebuilt functionality in libraries
like hipblas and hipfft. You may not need to write that matrix multiplication routine by hand!

66 Open slide master to edit

Things to Note

• No native Fortran API. You have to write your GPU code in C++
and import it to Fortran through ISO_C_binding
– AMD also provides hipfort library with a bunch of those bindings made

for you

• CMake support for HIP is still a work in progress. Watch
tomorrow’s talk by Balint Joo for more info on HIP and CMake

• Make sure you set -DAMDGPU_TARGETS="gfx90a" when running
cmake. Default is
AMDGPU_TARGETS="gfx900;gfx906;gfx908;gfx90a;gfx1030” but
gfx1030 is not supported by the Cray compiler.

77 Open slide master to edit

Resources
• Basic tutorial if you have no CUDA knowledge (still a work in progress) (includes Summit
specific instructions)
– https://github.com/olcf-tutorials/HIP_from_scratch

• HIP Tutorial if you're already familiar with CUDA (this also covers how to use HIP with
Fortran) (includes Summit specific instructions)
– olcf page: https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
– repo: https://github.com/olcf/HIP_for_CUDA_programmers

• hipfort (HIP bindings for fortran)
– https://github.com/ROCmSoftwarePlatform/hipfort

• API Guide
– https://docs.amd.com/category/HIP%20API%20Guides

• hipify (tool to convert cuda code to hip)
– https://github.com/ROCm-Developer-Tools/HIPIFY

• HIP-CUDA API support table
– https://github.com/ROCm-Developer-Tools/HIPIFY#cuda-apis

• Cuda training series (most of the knowledge still applies for HIP)
– https://www.olcf.ornl.gov/cuda-training-series/

https://github.com/olcf-tutorials/HIP_from_scratch
https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
https://github.com/olcf/HIP_for_CUDA_programmers
https://github.com/ROCmSoftwarePlatform/hipfort
https://docs.amd.com/category/HIP%20API%20Guides
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCm-Developer-Tools/HIPIFY
https://www.olcf.ornl.gov/cuda-training-series/

88 Open slide master to edit

OpenMP Offload

99 Open slide master to edit

What is OpenMP?
• OpenMP is the standard for thread based parallelism on shared

memory systems

• Code looks like normal serial code, with directives annotating
the code to give hints on how to parallelize.

int a[N];
#pragma omp parallel for
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

1010 Open slide master to edit

What is OpenMP Offload?
• Offload was introduced in OpenMP 4.0 standard
– New directives to offload data and computation to devices like GPUs

• Directives specified as comments in Fortran, and #pragma in C
– Supported compilers will determine how to parallelize the code based

on your directives
– If compiler doesn’t support, it will fallback to compiling for normal serial.

• Offload will take care of transferring data from host to device,
perform compute on device, and transfer data back to host.
– Based on the directives you specify

1111 Open slide master to edit

Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

int a[N];
#pragma omp target teams distribute parallel for
for(int i = 0; i<N; i++) {
a[i] = i+2;

}

// fortran would look like
!$omp target teams distribute parallel do
<do loop>
!$omp target teams distribute parallel do

1212 Open slide master to edit

Things to Note

• GCC currently doesn't support offloading for MI250X
accelerators yet. Only Cray and AMD support this at the
moment.

• Clang based compilers (Cray, AMD) don't support loop
directives yet.

• When compiling with hipcc for the examples, you get "loop not
vectorized" warnings from the LLVM optimizer because hipcc
add –O3 by default

1313 Open slide master to edit

Resources

OpenMP offload tutorial series from OLCF (includes Summit instructions):
• https://github.com/olcf/openmp-offload
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
• https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/

text tutorial: https://enccs.github.io/openmp-gpu/

https://github.com/olcf/openmp-offload
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/
https://enccs.github.io/openmp-gpu/

1414 Open slide master to edit

Kokkos

1515 Open slide master to edit

What is Kokkos?
• C++ library for offloading onto various backends (CUDA, OpenMP, HIP,

potentially others)

• Unlike others, not part of the compiler. You manage the source (or
module load it)

• Aims to be descriptive, not prescriptive
– Less fine grained control, but fewer footguns
– maps work to resources

• Many different backends supported, including HIP for GPU and OpenMP
on CPU (as well as serial)

• Influences and is influenced by the C++ standard

• Primarily developed by Sandia, a number of applications written

• RAJA is similar : https://raja.readthedocs.io/en/develop/index.html

1616 Open slide master to edit

Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i + 2;
}

// defaults to allocating and
// running on GPU if
// compiled for GPU
Kokkos::View<double*> a(“a”, N);
Kokkos::parallel_for(“label”, N,
KOKKOS_LAMBDA(int i) {
a(i) = i + 2;

}
);

1717 Open slide master to edit

Resources

• Tutorial repo: https://github.com/kokkos/kokkos-tutorials

• Condensed short tutorial video: https://www.youtube.com/watch?v=6Ts6k2Nas5w
(slides: https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short)

• Long tutorial (slides also in the github) modules 1-8: https://github.com/kokkos/kokkos-
tutorials/wiki/Kokkos-Lecture-Series

• main documentation: https://kokkos.github.io/kokkos-core-wiki/index.html

• Kokkos source code on Github: https://github.com/kokkos/kokkos

https://github.com/kokkos/kokkos-tutorials
https://www.youtube.com/watch?v=6Ts6k2Nas5w
https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos

